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Context

• Growing interest of citizens towards the 
adoption of autonomous cars [1]

• Connected and Automated Vehicles 
(CAV) technologies are expected to 
have positive impact on traffic [2]

• This research investigates the potential 
effects of CAV on:

• road safety,

• traffic (efficiency, management),

• and governance,

• in the Irish context, using real data.
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[1] Acheampong and Cugurullo (2019) Transportation research part F: traffic psychology

and behaviour, 62, 349-375.

[2] Guériau et al. (2016). Transportation research part C: emerging technologies, 67, 266-279.
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Methodology
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[3] Lopez et al. (2018). 21st International Conference on Intelligent Transportation Systems (ITSC), 2575-2582. IEEE.



Case studies
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Simulation set-up: M50 network
6

~7 km

J7

M50

N4

M50

M50N7

100
km/h

J9



Simulation set-up:
baseline scenario
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TII traffic data: https://www.nratrafficdata.ie/

• Flows are generated from 
TII loop sensor data 
(includes % of HGV, and 
flows per lane, every 5 min)

Real data Simulation
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https://www.nratrafficdata.ie/
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Simulation set-up: models for HDV and CAV
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[3] Lopez et al. (2018). 21st International Conference on Intelligent Transportation Systems (ITSC), 2575-2582. IEEE.

[4] Treiber and Kesting (2017). Transportation research procedia, 23, 174-187.

[5] Zhou et al. (2016). IEEE Transactions on Intelligent Transportation Systems, 18(6), 1422-1428.

[6] Do et al. (2019). Journal of Advanced Transportation.



Simulation set-up: CAV adoption scenarios
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[1] Acheampong and Cugurullo (2019) Transportation research part F: traffic psychology and behaviour, 62, 349-375.

[2] Guériau et al. (2016). Transportation research part C: emerging technologies, 67, 266-279.

[7] SAE international. (2016) - J3016.

[8] Bansal and Kockelman (2017). Transportation Research Part A: Policy and Practice, 95, 49-63.

• A main challenge will 

be the short- and mid-

term highly mixed 

traffic situation [2]

• Adoption scenarios

are based on existing 

surveys [1] and 

literature [8]



Preliminary results:
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• morning peak hour (7-8am)



Preliminary results: impact on traffic
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Preliminary results: impact on safety

• Surrogate safety indicators allow to detect conflicts [10] in simulation:
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Real data Simulation
RSA collision data: https://data.gov.ie/dataset/collision-rates-2014-to-2016

[10] Rahman et al. (2019). Transportation Research Part C: Emerging Technologies, 100, 354-371.

[11] Morando et al. (2018). Journal of Advanced Transportation, 2018.

• for the motorway,
Time to collision (TTC) is 
used, with specific 
thresholds:
1.5s for HDV
0.5s for CAV [11];

• the approach is validated
by comparing detected 
conflicts with real collision 
data.

https://data.gov.ie/dataset/collision-rates-2014-to-2016


Preliminary results: impact on safety
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Conclusions and future work
• Availability of real data allows to build and validate realistic baseline 

scenarios, capturing specificities of the Irish network.

• State-of-the-art research models for CAV and HDV ensure realistic

behaviours and variability.

• Preliminary results are consistent with literature [12,13], and show that 

while improvement is expected at long term, the short-term mixed 

traffic context would require more attention.

• New forms of mobility enabled by CAV like shared AV and dynamic 

ride-sharing [14] would affect the impact of CAV [15]
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[12] Stern et al. (2018). Transportation Research Part C: Emerging Technologies, 89, 205-221.

[13] Ramin et al. (2018). Transportation Research Board Annual Meeting.

[14] Guériau and Dusparic (2018). International Conference on Intelligent Transportation Systems (ITSC). IEEE.

[15] Guériau et al. (2019). IEEE Intelligent Transportation Systems Magazine, in press. 
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