Investigating the potential impact of Connected and Automated Vehicles in the Irish context

Maxime Guériau

Enable – Connect research centre School of Computer Science and Statistics, Trinity College Dublin

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

Context

- Growing interest of citizens towards the adoption of autonomous cars [1]
- Connected and Automated Vehicles (CAV) technologies are expected to have positive impact on traffic [2]
- This research investigates the potential effects of CAV on:
 - road safety,
 - traffic (efficiency, management),
 - and governance,

• in the Irish context, using real data.

[1] Acheampong and Cugurullo (2019) Transportation research part F: traffic psychology and behaviour, *62*, 349-375.

[2] Guériau et al. (2016). Transportation research part C: emerging technologies, 67, 266-279.

Project team

Principal investigator Dr. Maxime Guériau Research fellow

Supervisor Dr. Ivana Dusparic Ussher Assistant Professor

Expertise

Al techniques for Cooperative ITS and smart mobility AI algorithms for traffic optimisation, smart mobility

Funding & partners

Wider Impacts of Autonomous Vehicles WISE-ACT European Commission

Surpass: how shared autonomous cars will change cities

Current project

ITS Ireland Research Bursary:

CAV impact assessment on Irish roads through Multi-Agent traffic Simulation

[3] Lopez et al. (2018). 21st International Conference on Intelligent Transportation Systems (ITSC), 2575-2582. IEEE.

Case studies

CS1: Urban network

CS2: National road

N7 Johnstown – Rathcoole

M50

J7 – J9

Dublin city

centre

Complex intersections Traffic lights **Reduced speeds**

Higher speeds Multiple lanes **Different safety** concerns

High speeds **Complex junctions** High traffic volumes High speed variability

Simulation set-up: M50 network

Simulation set-up: baseline scenario

 Flows are generated from TII loop sensor data (includes % of HGV, and flows per lane, every 5 min)

TII traffic data: https://www.nratrafficdata.ie/

Simulation set-up: models for HDV and CAV

Human Driven Car/Truck CAV (level 2)

Example

Human-driven cars and trucks

ACC or C-ACC enabled vehicles

CAV (level 4/5)

Car-following model Krauss model [3,6] 1.5s headway [5] 50% variability

IDM [4,6] for (C)-ACC 0.8s headway [5] 5% sensor failure rate IDM [4,6] for AV 0.6s headway [5] 5% sensor failure rate

Lane-changing model

SUMO LC model [3,6] S moderate cooperation r and anticipation

SUMO LC model [3,6] moderate cooperation and anticipation

SUMO LC model [3,6] high cooperation and anticipation

[3] Lopez et al. (2018). 21st International Conference on Intelligent Transportation Systems (ITSC), 2575-2582. IEEE.

[4] Treiber and Kesting (2017). Transportation research procedia, 23, 174-187.

[5] Zhou et al. (2016). IEEE Transactions on Intelligent Transportation Systems, 18(6), 1422-1428.

[6] Do et al. (2019). Journal of Advanced Transportation.

Simulation set-up: CAV adoption scenarios

CAV adoption scenarios

- A main challenge will be the short- and midterm highly mixed traffic situation [2]
- Adoption scenarios are based on existing surveys [1] and literature [8]
- [1] Acheampong and Cugurullo (2019) Transportation research part F: traffic psychology and behaviour, 62, 349-375.
- [2] Guériau et al. (2016). Transportation research part C: emerging technologies, 67, 266-279.
- [7] SAE international. (2016) J3016.
- [8] Bansal and Kockelman (2017). Transportation Research Part A: Policy and Practice, 95, 49-63.

Preliminary results:

• morning peak hour (7-8am)

Preliminary results: impact on safety

• Surrogate safety indicators allow to detect conflicts [10] in simulation:

- for the motorway, Time to collision (TTC) is used, with specific thresholds: 1.5s for HDV 0.5s for CAV [11];
- the approach is validated by comparing detected conflicts with real collision data.

Simulation

RSA collision data: <u>https://data.gov.ie/dataset/collision-rates-2014-to-2016</u> [10] Rahman et al. (2019). Transportation Research Part C: Emerging Technologies, 100, 354-371. [11] Morando et al. (2018). Journal of Advanced Transportation, 2018.

Preliminary results: impact on safety

morning peak hour (6-8am)

Conclusions and future work

- Availability of real data allows to build and validate realistic baseline scenarios, capturing specificities of the Irish network.
- State-of-the-art research models for CAV and HDV ensure realistic behaviours and variability.
- Preliminary results are consistent with literature [12,13], and show that while improvement is expected at long term, the short-term mixed traffic context would require more attention.
- New forms of mobility enabled by CAV like shared AV and dynamic ride-sharing [14] would affect the impact of CAV [15]

[12] Stern et al. (2018). Transportation Research Part C: Emerging Technologies, 89, 205-221.

[13] Ramin et al. (2018). Transportation Research Board Annual Meeting.

[14] Guériau and Dusparic (2018). International Conference on Intelligent Transportation Systems (ITSC). IEEE.

[15] Guériau et al. (2019). IEEE Intelligent Transportation Systems Magazine, in press.

Thank you!

Maxime Guériau

Enable – Connect research centre School of Computer Science and Statistics, Trinity College Dublin

maxime.gueriau@scss.tcd.ie

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

References I

[1] Acheampong, R. A., & Cugurullo, F. (2019). Capturing the behavioural determinants behind the adoption of autonomous vehicles: Conceptual frameworks and measurement models to predict public transport, sharing and ownership trends of self-driving cars. Transportation research part F: traffic psychology and behaviour, *62*, 349-375.

[2] Guériau, M., Billot, R., El Faouzi, N. E., Monteil, J., Armetta, F., & Hassas, S. (2016). How to assess the benefits of connected vehicles? A simulation framework for the design of cooperative traffic management strategies. Transportation research part C: emerging technologies, 67, 266-279.

[3] Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J., Flötteröd, Y. P., Hilbrich, R., Lücken, L., Rummel, J., Wagner, P., & WieBner, E. (2018). Microscopic traffic simulation using sumo. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2575-2582. IEEE.

[4] Treiber, M., & Kesting, A. (2017). The intelligent driver model with stochasticity-new insights into traffic flow oscillations. Transportation research procedia, 23, 174-187.

[5] Zhou, M., Qu, X., & Jin, S. (2016). On the impact of cooperative autonomous vehicles in improving freeway merging: a modified intelligent driver model-based approach. IEEE Transactions on Intelligent Transportation Systems, 18(6), 1422-1428.

References II

[6] Do, W., Rouhani, O. M., & Miranda-Moreno, L. (2019). Simulation-Based Connected and Automated Vehicle Models on Highway Sections: A Literature Review. Journal of Advanced Transportation.

[7] SAE international. (2016). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. SAE International, (J3016).

[8] Bansal, P., & Kockelman, K. M. (2017). Forecasting Americans' long-term adoption of connected and autonomous vehicle technologies. Transportation Research Part A: Policy and Practice, 95, 49-63.

[9] Hamad, K., & Kikuchi, S. (2002). Developing a measure of traffic congestion: fuzzy inference approach. Transportation research record, 1802(1), 77-85.

[10] Rahman, M. S., Abdel-Aty, M., Lee, J., & Rahman, M. H. (2019). Safety benefits of arterials' crash risk under connected and automated vehicles. Transportation Research Part C: Emerging Technologies, 100, 354-371.

References III

[11] Morando, M. M., Tian, Q., Truong, L. T., & Vu, H. L. (2018). Studying the safety impact of autonomous vehicles using simulation-based surrogate safety measures. Journal of Advanced Transportation.

[12] Stern, R. E., Cui, S., Delle Monache, M. L., Bhadani, R., Bunting, M., Churchill, M., ... & Seibold,
B. (2018). Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments.
Transportation Research Part C: Emerging Technologies, 89, 205-221.

[13] Ramin, A., Kamrani, M., Khattak, A., & Rios-Torres, J. (2018). Safety impacts of automated vehicles in mixed traffic. 2018 Transportation Research Board Annual Meeting.

[14] Guériau, M., & Dusparic, I. (2018). SAMoD: Shared Autonomous Mobility-on-Demand using Decentralized Reinforcement Learning. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 1558-1563. IEEE.

[15] Guériau, M., Cugurullo, F., Acheampong, R. A., Dusparic, I. (2019). Shared Autonomous Mobility-on-Demand: Learning-based approach and its performance in the presence of traffic congestion, IEEE Intelligent Transportation Systems Magazine, in press.