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Context and objectives Con-RL Evaluation Conclusions

State space adaptation in reinforcement learning
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I When does an agent need to adapt its state space?

• when its original state space is too big/small

• when sensors are added or removed dynamically
• when sensors input granularity changes over time
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State space adaptation in reinforcement learning
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I How to enable this dynamic adaptation?

1. By generating, learning or adapting one state space
2. By switching between several state spaces
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Existing approaches

1. Generating, learning or adapting one state space
I State space refinement methods, usually from a grid-based

state space
3 State aggregation techniques [1] allow to reduce a state space size

3 And states can be divided into finer ones [6]

8 But it highly depends on the initial grid granularity

I Function approximators can generate a state space from
the agent inputs

3 Allows for an adaptive input space partitioning [9]

8 But can be specific to the RL algorithm (e.g. TD in [9])
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Existing approaches

1. Generating, learning or adapting one state space
I Clustering techniques enable a dynamic state space

generation from continuous inputs
3 Using supervised algorithms like Vector Quantization [2]

3 Using a self-organizing network like Growing Neural Gas [3, 12]

3 Can adapt the state space where the policy is updated
(GNG-Q [3]) or for tracking rewards (TD-GNG [12])

8 However this process can be hard to apply online [3]

8 Or requires additional mechanisms to control the state space
size [12]

Constructivist Approach to State Space Adaptation in Reinforcement Learning – M. Guériau, N. Cardozo and I. Dusparic – SASO 2019 3/19



Context and objectives Con-RL Evaluation Conclusions

Existing approaches

2. Switching between several state spaces
3 Can applied for multi-objective RL [11]

H Enables to cope with environment/observation changes

H Allows to keep different state space granularities
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Constructivist approaches

I Inspired from a theory [8] that models human mind
construction process

I Models the continuous construction and adaptation of
knowledge through accommodation and assimilation

I A framework with RL has been proposed, but at a
conceptual level [10]
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Con-RL: Constructivist RL for dynamic state space adaptation
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Dynamic state space learning
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Dynamic state space learning

A Multi-Layer Growing Neural Gas
• Each layer is a Growing Neural Gas

(GNG) [4], specialized in one action
• Each layer is a self-organizing

network that learns where actions are
taken in the input space from the
sensor-based state space

• A layer is triggered when an action
has been executed θ times for the
same state

ML-GNG
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Dynamic state space learning

ML-GNG:
• combines all layers as a new learnt

state space
• provides the agent with a

generalization of the underlying
Q-learning policy

• allows to speed-up learning by
simplifying the sensor-based state
space during firsts episodes

ML-GNG
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Dynamic state space selection
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Dynamic state space selection

Action selection relies on:
I a confidence value:

• distance from current input to the nearest GNG node in ML-GNG
• number of times the same action was executed in the given state

I two configurable thresholds (one for ML-GNG and one for the
sensor-based state space)

The action selector picks:
I the policy from the representation with the highest confidence if one or

both are above the defined threshold
I a random action if none reaches this condition (to allow more

exploration)
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Evaluation
Mountain car

Parameter Value/Range

State: Position [−1.2,0.6] (goal at 0.6)
State: Velocity [−0.07,0.07]
Actions Left −1, Neutral 0 or Right 1
Reward 100 if at the goal, −10 otherwise.

I Sensor-based discretization: 10x10 grid-based state space
I Q-learning parameters: α = 0.1, γ = 0.9, epsilon decay policy ε = exp−Et ,

E = 0.015
I ML-GNG parameters: λ = 10, amax = 200, α = 0.5, β = 0.05, k = 1000,

εb = 0.5, εn = 0.1 and θ = 20
I Q-learning GNG (GNG-Q [3]) parameters: α = 0.1, γ = 0.95, λ = 1000,

amax = 100, εb = 0.5, and εn = 0.1
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Evaluation
Mountain car
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3 ML-GNG builds up on an existing state space and learns from
previously taken actions

8 GNG-Q requires more time to converge
3 Con-RL speeds-up learning at early episodes and ensures long-term

performance
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Evaluation
Mountain car
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3 Grid, GNG-Q and ML-GNG converge to similar policies
3 ML-GNG provides a generalisation of the sensor-based state space
3 Con-RL dynamically adapts the representation
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Evaluation
Shared Autonomous Mobility on Demand [5]

Parameter Value/Range

State: Occupancy 0,1,2,3,4 (goal > 1)
State:

0,1,2, . . . ,10+
Req. in own zone
State:

0,5,10, . . . 20+
Req. in neighb. zone
Actions pick up, rebalance, idle
Reward 100 at goal, 0 otherwise

I Each car is an agent, learning how to
serve requests

I Goal is to travel with one passenger or
more
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Evaluation
Shared Autonomous Mobility on Demand [5]
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NYC taxi requests data [7]
15 consecutive Tuesdays

(7am–10am)

I 200 SAMoD vehicles agents
I Sensor-based state space = 275 states:

• 5 occupancies
• 11 own zone requests number
• 5 neighbouring zones requests

number
I Q-learning parameters: α = 0.1, γ = 0.9,

epsilon decay policy ε = exp−Et , E = 0.001
I ML-GNG parameters: λ = 10, amax = 200,

α = 0.5, β = 0.05, k = 1000, εb = 0.5, εn = 0.1
and θ = 20

Constructivist Approach to State Space Adaptation in Reinforcement Learning – M. Guériau, N. Cardozo and I. Dusparic – SASO 2019 15/19



Context and objectives Con-RL Evaluation Conclusions

Evaluation
Shared Autonomous Mobility on Demand [5]

5 days 8 days 10 days 15 days
Grid Con-RL Grid Con-RL Grid Con-RL Grid Con-RL

Served requests (%) 52.898 73.692 71.625 80.324 82.201 84.703 88.26 88.367
Avg waiting time (min) 3.071 2.807 2.57 2.594 2.304 2.329 2.203 2.304
Avg occupancy 2.274 2.492 2.103 2.327 2.063 2.282 2.154 2.33
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Evaluation
Shared Autonomous Mobility on Demand [5]
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Conclusions
Summary

I We proposed Con-RL: an approach for autonomous state
space learning and adaptation

I Con-RL combines:
I ML-GNG, a multi-layered clustering technique to learn

optimized state space at runtime;
I A state space selector, that picks the most suitable

representation to base the action decision on
I Con-RL was evaluated in two case studies:

I A single agent mountain car scenario
I A multi-agent ride-sharing simulation
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Conclusions
Achievements and remaining challenges

3 Con-RL can remove the need for manual state space
specification:
3 it reduces the size of the sensor-based state space to

lower the learning time;
3 but it also allows for an accurate long-term policy

learning.
H The behaviour of Con-RL needs further investigation:

H when new sensors are added/removed at runtime
H when more representations/sensors are available at the

same time
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► When does an agent need to adapt its state space?

 when its original state space is too big/small

 when sensors are added or removed dynamically

 when sensors input granularity changes over time
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► Inspired from a theory [1] that models human

mind construction process

► Models the continuous construction and

adaptation of knowledge through 

accommodation and assimilation

► A framework with RL has been proposed, but 

at a conceptual level [2]
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► Dynamic state space learning 

► Dynamic state space selection 

ML-GNG

 Using a Multi-Layer Growing Neural Gas

 Each layer is a GNG [3], a self-organizing network, 

specialized in one action and is triggered when an 

action was picked θ times for the same state

 All layers are combined as a new learnt state

space to provide a generalization of the

sensor-based state space

5. Results in Shared Autonomous Mobility on Demand
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2. Constructivist approaches

 Sensor-based discretization: 10x10 grid-based state space

 Baseline: GNG-Q [4]

 200 agents in SAMoD ride-sharing simulation [5]

 New York City taxi requests [6], 15 Tuesdays (7-10am)
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