SAMoD: Shared Autonomous Mobility-on-Demand using Decentralized Reinforcement Learning

Maxime Guériaud and Ivana Dusparic

Enable - CONNECT Research Centre
School of Computer Science and Statistics,
Trinity College Dublin
maxime.gueriau@scss.tcd.ie, ivana.dusparic@scss.tcd.ie

November 6th 2018
Context and objectives

MoD with SAVs
Challenges
Approaches

SAMoD

Agents
System

Simulation

Requests
Scenarios
Demonstration

Results

Evaluation
Rebalancing and Ride-Sharing
Demand patterns

Conclusions

SAMoD – Maxime Guériau and Ivana Dusparic – November 6th 2018
Context and objectives

Mobility-on-Demand with Shared Autonomous Vehicles

<table>
<thead>
<tr>
<th></th>
<th>Taxi</th>
<th>Car-Sharing</th>
<th>SAV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick-up</td>
<td>Anywhere covered</td>
<td>Stations or where available</td>
<td>Anywhere possible</td>
</tr>
<tr>
<td>Drop-off</td>
<td>Anywhere covered</td>
<td>Same station or where authorized</td>
<td>Anywhere possible</td>
</tr>
<tr>
<td>Parking</td>
<td>Station or private parking</td>
<td>Stations or on-street</td>
<td>Dynamic and adaptive</td>
</tr>
</tbody>
</table>

SAMoD – Maxime Guériau and Ivana Dusparic – November 6th 2018
Context and objectives

✓ Advantages and ★ challenges for Mobility-on-Demand with SAV

✓ fully flexible fleet size
✓ robots (almost) never need to take a break
✓ can be summoned everywhere
✓ can be very efficient if ride sharing enabled [5, 6]
★ can save parking space?
★ can improve traffic in cities?
★ dynamic adaptation to demand (and/or anticipation [3])
★ limit empty mileage [7]?
★ optimize SAV-rider assignment (especially when ride sharing)
Context and objectives

Approaches

<table>
<thead>
<tr>
<th></th>
<th>Centralized</th>
<th>Decentralized</th>
<th>Learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Several SAV companies</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Dynamic fleet size</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Optimized assignment</td>
<td>✓ limited scalability</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>Dynamic ride-sharing</td>
<td>✓ requires full knowledge [5]</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Used data</td>
<td>Full network knowledge [3, 5]</td>
<td>Local knowledge</td>
<td>Local knowledge</td>
</tr>
</tbody>
</table>
SAMoD agents

Perception:
- Requests and vehicles in current zone
- Built historical data per zone

Decision making:
- Reinforcement learning (Q-learning [11])
- Reward: to have passengers

Actions:
- Pick-up (inc. ride sharing)
- Rebalance to zone
- Do nothing
SAMoD system architecture

SAMoD environment
- Map of the area & zones
- Vehicles update (joining/leaving)

Real-time requests

<table>
<thead>
<tr>
<th>id</th>
<th>GPS cords.</th>
<th># of passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>8784</td>
<td>-73.97942352; 40.74461365</td>
<td>1</td>
</tr>
<tr>
<td>8785</td>
<td>-73.98999023; 40.75730515</td>
<td>4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Raise events
- Check for new requests in current zone:
 - At zone border crossed
 - At last passenger drop-off
 - At finished rebalancing
- At pick-up:
 - Calculate route to destination
 - Re-calculate route (if ride-sharing)

SAMoD agents
- Initialization of the learning process
 - RL States S
 - RL Actions A
 - Relocation zones

RL Reward R
- Built historical data per zone

RL process
- Decision making S_{t+1}, R_{t+1}, A_{t+1}

Action
- With passenger(s)
 - Ride-sharing
 - Drop-off
 - Travel
- Empty
 - Rebalancing
 - Pick-up
 - Idle

Vehicles update
- (joining/leaving)

Requests
- Vehicles
Simulation

From NYC taxi data trips to requests

Trips from 50 consecutive Tuesdays (07/2015 – 06/2016):
- 659,579 trips (1,074,690 passengers)

Four time periods:
- night (2-5am)
- morning rush hour (7-10am)
- midday (11am-2pm)
- afternoon rush hour (6-9pm)

One request:
- t_R: time the user requested the trip
- n_R: number of passengers (1–4)
- l_{PU}: waiting user/pick-up location (coordinates)
- l_{DO}: drop-off location (coordinates)
- z_{PU}: pick-up zone (id)
- z_{DO}: drop-off zone (id)

Example of trips origin position recorded on February 2nd 2016 and mapped to the zones describing the studied network.
Simulation

Scenarios

<table>
<thead>
<tr>
<th>Baselines</th>
<th>Summary</th>
<th>Assignment</th>
<th>Rebalancing</th>
<th>Ride sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Centralized</td>
<td>No</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>D</td>
<td>Decentralized</td>
<td>No</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>C_RB</td>
<td>Centralized</td>
<td>Yes</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>D_RB</td>
<td>Decentralized</td>
<td>Yes</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>C_RS</td>
<td>Centralized</td>
<td>No</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>D_RS</td>
<td>Decentralized</td>
<td>No</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>C_RB_RS</td>
<td>Centralized</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>D_RB_RS</td>
<td>Decentralized</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMoD</th>
<th>Summary</th>
<th>Assignment</th>
<th>Rebalancing</th>
<th>Ride sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_RB</td>
<td>Learnt</td>
<td>Learnt</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>S_RB_RS</td>
<td>Learnt</td>
<td>Learnt</td>
<td></td>
<td>Learnt</td>
</tr>
<tr>
<td>S_RB_RS+1</td>
<td>Learnt</td>
<td>Learnt</td>
<td></td>
<td>Learnt</td>
</tr>
<tr>
<td>S_RB2_RS+1</td>
<td>Learnt</td>
<td>Learnt</td>
<td></td>
<td>Learnt</td>
</tr>
</tbody>
</table>
Simulation

Demonstration
Results
Evaluation

We evaluated the impact of the different strategies on:

- **The system:**
 - served requests
 - not served/timed-out requests (10 min)

- **Riders:**
 - waiting time t_w
 - detour time t_d
 - travel time TT

- **Vehicles:**
 - total Vehicle Miles Travelled (VMT)
 - empty VMT
 - engaged VMT
 - shared VMT
 - occupancy
Results: Rebalancing (7–10am)

<table>
<thead>
<tr>
<th>System</th>
<th>No RB, No RS</th>
<th>Rebalancing</th>
<th>Ride-sharing</th>
<th>RB and RS</th>
<th>SAMoD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C</td>
<td>D</td>
<td>C_RB</td>
<td>D_RB</td>
<td>C_RS</td>
</tr>
<tr>
<td>Satisfied requests</td>
<td>29667</td>
<td>35388</td>
<td>30191</td>
<td>36913</td>
<td>38327</td>
</tr>
<tr>
<td>% of total requests</td>
<td>76.4</td>
<td>91.13</td>
<td>77.75</td>
<td>95.06</td>
<td>98.7</td>
</tr>
<tr>
<td>Not served requests</td>
<td>8675</td>
<td>3098</td>
<td>8150</td>
<td>1590</td>
<td>0</td>
</tr>
<tr>
<td>% of total requests</td>
<td>22.34</td>
<td>7.98</td>
<td>20.99</td>
<td>4.09</td>
<td>0</td>
</tr>
<tr>
<td>Avg t_w (min)</td>
<td>11.63</td>
<td>5.48</td>
<td>11.07</td>
<td>4.57</td>
<td>2.41</td>
</tr>
<tr>
<td>Avg TT (min)</td>
<td>5.8</td>
<td>5.69</td>
<td>5.79</td>
<td>5.72</td>
<td>10.31</td>
</tr>
<tr>
<td>Avg t_d (min)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4.57</td>
</tr>
<tr>
<td>Avg VMT</td>
<td>863.8</td>
<td>735.79</td>
<td>884.71</td>
<td>861.4</td>
<td>690.28</td>
</tr>
<tr>
<td>Avg empty VMT</td>
<td>428.48</td>
<td>228.29</td>
<td>442.24</td>
<td>330.04</td>
<td>117.02</td>
</tr>
<tr>
<td>Avg engaged VMT</td>
<td>435.32</td>
<td>507.5</td>
<td>442.47</td>
<td>531.36</td>
<td>573.26</td>
</tr>
<tr>
<td>Avg shared VMT</td>
<td>103</td>
<td>120.55</td>
<td>103.78</td>
<td>125.54</td>
<td>382.75</td>
</tr>
<tr>
<td>Avg occupancy</td>
<td>1.47</td>
<td>1.48</td>
<td>1.47</td>
<td>1.48</td>
<td>2.67</td>
</tr>
</tbody>
</table>
Results: Ride sharing (7–10am)

<table>
<thead>
<tr>
<th>System</th>
<th>Satisfied requests</th>
<th>% of total requests</th>
<th>Not served requests</th>
<th>% of total requests</th>
<th>Avg (t_w) (min)</th>
<th>Avg (TT) (min)</th>
<th>Avg (t_d) (min)</th>
<th>Avg VMT</th>
<th>Avg empty VMT</th>
<th>Avg engaged VMT</th>
<th>Avg shared VMT</th>
<th>Avg occupancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>No RB, No RS</td>
<td>29667 35388</td>
<td>76.4 91.13</td>
<td>8675 3098</td>
<td>22.34 7.98</td>
<td>11.63 5.48</td>
<td>5.8 5.69</td>
<td>0 0</td>
<td>863.8 735.79</td>
<td>428.48 228.29</td>
<td>435.32 507.5</td>
<td>103 120.55</td>
<td>1.47 1.48</td>
</tr>
<tr>
<td>Rebalancing</td>
<td>C D</td>
<td>C_RB D_RB</td>
<td>C_RS D_RS</td>
<td>RB and RS</td>
<td>SAMoD</td>
<td>S_RB S_RB_RS S_RB_RS+1 S_RB2_RS+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_RB</td>
<td>D_RB</td>
<td>C_RS</td>
<td>D_RS</td>
<td>C_RB_RS</td>
<td>D_RB_RS</td>
<td>S_RB</td>
<td>S_RB_RS</td>
<td>S_RB_RS+1</td>
<td>S_RB2_RS+1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30191 36913</td>
<td>98.7 98.81</td>
<td>0 54</td>
<td>98.75 98.91</td>
<td>7.48 1.78</td>
<td>0</td>
<td>11</td>
<td>2903 693</td>
<td>2242</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38327 38368</td>
<td>2.1 2.6</td>
<td>0 0.14</td>
<td>98.75 98.91</td>
<td>7.48 1.78</td>
<td>0</td>
<td>0.03</td>
<td>7.48 1.78</td>
<td>2242</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38346 38407</td>
<td>4.44 2.99</td>
<td>0</td>
<td>11</td>
<td>7.48 1.78</td>
<td>0</td>
<td>0.39</td>
<td>6.31 6.49</td>
<td>2242</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35691 37790</td>
<td>0.03</td>
<td>3.39</td>
<td>7.48 1.78</td>
<td>2242</td>
<td>12.03 12.12</td>
<td>6.49</td>
<td>6.49</td>
<td>12.12</td>
<td>2242</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No RB, No RS	35388	91.13	8675	7.98	5.48	5.69	0	735.79	228.29	507.5	120.55	1.48
Rebalancing	C D	C_RB D_RB	C_RS D_RS	RB and RS	SAMoD	S_RB S_RB_RS S_RB_RS+1 S_RB2_RS+1						
C_RB	D_RB	C_RS	D_RS	C_RB_RS	D_RB_RS	S_RB	S_RB_RS	S_RB_RS+1	S_RB2_RS+1			
36913	98.81	54	98.91	1.78	0.14	11	693	2242				
38368	2.6	0.03	98.91	1.78	0	3.39	7.48	2242				
38407	2.99	0	7.48	2242	12.12	6.49	6.49	2242				
37790	0.39	3.39	98.91	2242	12.03	6.31	6.49	2242				
38346	0.03	3.39	98.91	2242	12.03	6.31	6.49	2242				
38397	0.39	3.39	98.91	2242	12.03	6.31	6.49	2242				
Results

Demand patterns

- Average waiting time (min)
 - 2-5am
 - 7-10am

- Average travel time (min)
 - 2-5am
 - 7-10am

SAMoD – Maxime Guériau and Ivana Dusparic – November 6th 2018
Results
Demand patterns

Occupancy

Average # of passengers per trip
2-5am

Average # of passengers per trip
7-10am

S_RB S_RB_RS S_RB_RS+1 S_RB2_RS+1
0 1 2 3 4
Vehicle objective is selfish but learnt policy enables improvements:

- At the system scale
- From riders perspective

Vehicle fleet learns an effective rebalancing strategy using historical data

Results highlight a complex trade-off

Impact of/on traffic is not considered
Conclusions

Future work
Conclusions

Future work

Model a SAV system with enabled ride sharing in Dublin:

- generate trips from a survey
- create different adoption rate scenarios (from the survey)

Evaluate the impact of this system on:

- traffic conditions
- parking space use
References I

